콘텐츠로 건너뛰기
쿼드(QUAD) 드론연구소

쿼드(QUAD) 드론연구소

  • 👨‍✈️ 초보 파일럿
  • 🎖️ 개발자
  • 🥇 전문가
  • 💎 다이아몬드
  • 🛠️ Tech-Tip
  • 📝 블로그
  • ⚠️ 저작권
login
쿼드(QUAD) 드론연구소
쿼드(QUAD) 드론연구소

🕰️PX4와 ArduPilot의 개발 배경

4
  • ArduPilot 주요 개발자
  • ArduPilot
  • PX4 주요 개발자
  • PX4

📚드론 개발 라이브러리

10
  • 1.드론 개발자 로드맵(Load-Map)
  • 2.드론 개발 소프트웨어 개요
  • 3.MAVLINK
  • 4.PyMAVLink
  • 5.MavProxy
  • 6.MAVSDK
  • 7.MAVROS
  • 8.PX4 uORB with ROS 2
  • 9.자율주행드론 개발 프로세스
  • 10.학습 로드맵(Road-map)

🧩자율주행드론 시스템 아키텍처

4
  • Smart UAV is Robot!
  • PX4 System 아키텍쳐
  • PX4 Software 아키텍쳐
  • 쿼드(QUAD) 자율주행드론 UAV 시스템 아키텍처

🐧Linux (Ubuntu) 기초

14
  • Ubuntu 22.04 설치 (PC에 직접 설치)
  • Windows 10/11 WSL2 설치
  • Linux 개요
  • 리눅스 쉘 기본 명령어
  • 자주쓰는 명령어 정리 (Ubuntu 사용)
  • 자주 사용하는 터미널 명령어
  • Linux Package 에 대한 이해
  • su와 sudo 명령어 활용법
  • 리눅스 파일 시스템 이해하기
  • 리눅스 권한에 대한 이해
  • 빌드 시스템에 대한 이해
  • Make(Makefile) 사용 가이드
  • CMake 의 이해
  • CMake 사용 가이드

픽스호크(Pixhawk) 기초

29
  • 쿼드(QUAD) 자율주행 드론(UAV) 개발 키트
  • 픽스호크 드론의 기초 개요
  • 드론에 사용되는 물리학
  • 멀티콥터의 동작 원리
  • ArduPilot vs. PX4 선택
  • PX4 시스템 아키텍처
  • 지상국(Ground Control System) 선택
  • Pixhawk 6C 비행 컨트롤러
  • Pixhawk 6X 비행 컨트롤러
  • 드론에서 사용되는 센서간 통신제어 방식
  • Pixhawk 배선
  • Pixhawk 전원 공급
  • GPS/나침반
  • 거리 측정기 (LiDAR)
  • 고도(Altitude) 이해
  • 컴패니언 컴퓨터
  • 오프보드(Offboard) 제어
  • 컴패니언 컴퓨터 GPIO를 이용한 FC 제어
  • ESC(전자속도제어기)
    • ESC (전자속도제어기)
    • BLHeli32 및 BLHeli_S ESC
    • DShot ESC
    • DroneCAN ESC
    • PWM, OneShot 및 OneShot125 ESC
  • 무선제어시스템(Radio)
    • 무선 제어 시스템 (Radio)
    • 조종기/수신기
    • 수신기 RSSI 강도 표시
  • Telemetry 라디오
    • Telemetry 라디오
    • SiK Radio 설정
    • 다중 Point-to-Point 설정

Q250 사용 가이드

17
  • Q250 빠른 시작 가이드
  • QGroundControl 설치
  • Q250 펌웨어 재설치 (선택)
  • Q250 파라메터 설정
  • FS-i6x 조종기와 수신기 설정
  • 비행 모드
  • 전원 설정
  • Actuators (모터) 설정
  • Flight Behavior 설정
  • 텔레메트리 연결
  • GPS 연결
  • 컴패니언컴퓨터 전원 공급장치(UBEC) 사용 가이드
  • LED 컨트롤러 사용 가이드
  • 컴패니언 컴퓨터와 FC의 UART 케이블 연결
  • Optical-Flow & LiDAR 설정
  • 지자계 간섭 문제 해결
  • fake_gps (가상 GPS)

Q500 사용 가이드

10
  • Q500 사용 가이드 개요
  • QGroundControl 설치
  • Q500 펌웨어 설정
  • Q500 파라메터 설정
  • Radiomaster 조종기 설정
  • 수신기의 전파 수신 강도(RSSI) 설정
  • Pixhawk 6X Ethernet 설정
  • 컴패니언 컴퓨터와 FC 연결 설정
  • 시뮬레이터 사용 가이드
  • fake_gps (가상 GPS)

Q650 사용 가이드

9
  • Q650 사용 가이드 개요
  • QGroundControl 설치
  • Q650 펌웨어 설정
  • Q650 파라메터 설정
  • 조종기 설정
  • 수신기의 전파 수신 강도(RSSI) 설정
  • Pixhawk 6X Ethernet 설정
  • 컴패니언 컴퓨터와 FC 연결 설정
  • H-Flow 설정 가이드

첫 비행 및 튜닝

12
  • 첫 비행 및 튜닝 개요
  • 첫 비행 지침
  • 수동비행 지침
  • 임무 비행
  • 지오펜스
  • 안전지점(Rally Points)
  • 비행 모드
  • 지형 추적/유지
  • PID 튜닝
  • 비행 기록 분석
    • 비행 기록 분석
    • Flight Review를 이용한 로그 분석
    • 비행기록 분석 실습

PX4-Toolchain 개발환경 구성

4
  • Windows 10/11 WSL2 설치
  • ROS(1) + PX4 Toolchain 구성
  • Gazebo Classic 시뮬레이터 사용하기
  • ROS2 + PX4 Toolchain 구성

MAVLink-Python 프로그래밍

17
  • MAVLINK 개요
  • Python MAVLink 라이브러리 사용
  • 드론에 연결하기(Connect)
  • MAVLINK 메시지 주고받기
  • 비행 모드 (PX4 멀티콥터)
  • MAV_CMD
  • PX4 ‘OFFBOARD” 와 Ardupilot ‘GUIDED’ 모드 차이
  • PX4 Offboard 모드에서만 유효한 주요 MAV_CMD
  • 드론에 시동걸기(MAV_CMD_COMPONENT_ARM_DISARM)
  • 이륙하기(MAV_CMD_NAV_TAKEOFF)
  • 이동하기(SET_POSITION_TARGET_GLOBAL_INT)
  • 이동하기(SET_POSITION_TARGET_LOCAL_NED)
  • 기수 방향과 속도 변경
  • [별첨]참고 자료
  • MAVLINK 신뢰성 보장
    • MAVLINK 신뢰성 보장
    • MAVLINK 2 메시지 서명
    • [참고]HMAC-SHA256이란?

🛠️Tech-Tip

2
  • MAVLink Router
  • 쿼드(QUAD) 자율주행 드론용 컴패니언컴퓨터 소프트웨어 – Jetson Orin-Nano 용 (Ver.3.1-Ubuntu 22.04)
카테고리 보기
  • Home
  • Docs
  • 픽스호크(Pixhawk) 기초
  • 멀티콥터의 동작 원리

멀티콥터의 동작 원리

1 min read

멀티콥터는 여러 개의 아래쪽으로 추진하는 모터/프로펠러 장치의 속도를 높이거나 늦추어 움직임을 제어하는 ​​기계적으로 단순한 공중 비행체입니다.

멀티콥터는 공기역학적으로 불안정하며 안정적인 비행을 위해 온보드 컴퓨터(Flight Controller)가 절대적으로 필요합니다. 결과적으로 그들은 “Fly by Wire” 시스템이며 컴퓨터가 작동하지 않는다면 비행하고 있는 것이 아닙니다. 자동 조종 장치는 작은 온보드 자이로스코프와 가속도계(스마트폰에서 볼 수 있는 것과 동일)의 데이터를 결합하여 방향과 위치의 정확한 추정치를 유지합니다.

위에 표시된 쿼드콥터는 가장 단순한 유형의 멀티콥터로 각 모터/프로펠러가 양쪽에 있는 두 개의 모터와 반대 방향으로 회전합니다(즉, 프레임의 반대쪽 모서리에 있는 모터는 같은 방향으로 회전).

쿼드콥터는 한쪽에 있는 두 모터의 속도를 높이고 다른 두 모터의 속도를 늦춤으로써 롤 및 피치 회전을 제어할 수 있습니다. 예를 들어 쿼드콥터가 왼쪽으로 구르고 싶다면 프레임의 오른쪽에 있는 모터의 속도를 높이고 왼쪽에 있는 두 모터의 속도를 늦출 것입니다. 마찬가지로 앞으로 회전하려는 경우 뒤쪽 두 모터의 속도를 높이고 앞쪽 두 모터의 속도를 늦춥니다.

콥터는 서로 대각선으로 있는 두 모터의 속도를 높이고 다른 두 모터의 속도를 줄여 왼쪽 또는 오른쪽으로 회전(일명 “요”)할 수 있습니다.

수평 운동은 차량이 원하는 이동 방향으로 기울어지도록 일부 모터의 속도를 일시적으로 높이거나 낮추고 모든 모터의 전체 추력을 증가시켜 차량이 앞으로 쏠 수 있도록 합니다. 일반적으로 차량이 더 기울어질수록 더 빨리 이동합니다.

고도는 동시에 모든 모터의 속도를 높이거나 낮추어 제어합니다.

MultiCopter와 UAV/Drone의 차이점은 무엇입니까?

멀티콥터는 자율 비행이 가능할 때 UAV 또는 드론이 됩니다. 일반적으로 이것은 가속도계 및 자이로 정보를 가져와 기압계 및 GPS 데이터와 결합하여 비행 컨트롤러가 방향뿐만 아니라 위치도 이해하도록 하는 것을 의미합니다.

업데이트된 날짜 2025년 11월 24일

당신의 감정은 어떤가요?

  • Happy
  • 보통
  • 슬픈

이 문서 공유 :

  • Facebook
  • X
  • LinkedIn
  • Pinterest

제공 BetterDocs

답글 남기기 응답 취소

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

© 2025 쿼드(QUAD) 드론연구소 - Kadence WP의 워드프레스 테마

  • 👨‍✈️ 초보 파일럿
  • 🎖️ 개발자
  • 🥇 전문가
  • 💎 다이아몬드
  • 🛠️ Tech-Tip
  • 📝 블로그
  • ⚠️ 저작권
Korean
English